Design and Simulation 4-Channel Demultiplexer Based on Photonic Crystals Ring Resonators
نویسندگان: ثبت نشده
چکیده مقاله:
In this paper, a new design of demultiplexer based on two-dimensional photonic crystal ringresonator is proposed. The structure is made of a hexagonal lattice of silicon rods with therefractive index 3.46 in coefficient of air with refractive index 1. The transmission efficiencyand Quality factor for our proposed demultiplexer, respectively, are more than 65% and1600. The normalized transmission spectra of the photonic crystal ring resonator are takenusing Two-dimensional (2D) Finite Difference Time Domain (FDTD) method. The photonicband gap is calculated by Plane Wave Expansion (PWE) method.
منابع مشابه
Wavelength Demultiplexer using Heterostructure Ring Resonators in Triangular Photonic Crystals
In this paper a new type of wavelength demultiplexer using ring resonators in 2D triangular photonic crystal is presented. The designed demultiplexer contents two regions which each own a resonator. Two dielectric constants are used in this demultiplexer. These structures which are called hetero have the capability to be used in wavelength division multiplexing (WDM) systems. The average transf...
متن کاملNovel Design of Optical Channel Drop Filter Based on Photonic Crystal Ring Resonators
In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spec...
متن کاملNovel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter
Photonic crystal ring resonators (PCRRs) are traditional structures fordesigning optical channel drop filters. In this paper, Photonic crystal channel drop filter(CDFs) with a new configuration of ring resonator is presented. The structure is made ofa square lattice of silicon rods with the refractive index nsi=3. 4 which are perforated inair with refractive index nair=1. Calculations of band s...
متن کاملnovel design of optical channel drop filter based on photonic crystal ring resonators
in this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. the rods of this structure is silicon with the refractive index nsi=3.46 and the surrounding environment is air with the refractive index of nair=1.the widest photonic band gap obtains for the filling ratio of r/a = 0.2. the filter’s transmis...
متن کاملAdd-Drop and Channel-Drop Optical Filters Based on Photonic Crystal Ring Resonators
Here, we propose an add-drop and a channel drop filter based on two-dimensional photonic crystal all circular ring resonators. These structures are made of a square lattice of silicon rods with the refractive index n1=3.464 surrounded by air (with refractive index n2=1). The broadest photonic band gap occurs at the filling ratio of r/a = 0.17. Two linear defect W1 waveguides couple to the ring....
متن کاملQuality Factor Enhancement of Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators
In this paper, a channel drop ring resonator filter based on two dimensional photonic crystal is proposed which is suitable for all optical communication systems. The multilayer of silicon rods in the center of resonant ring enables one to adjust resonant wavelength of the ring and enhance power coupling efficiency between ring and waveguide. Refractive index and radius of multilayer rods insid...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 5
صفحات 22- 25
تاریخ انتشار 2013-05-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023